User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 6
Omicron variants bind to human angiotensin-converting enzyme 2 (ACE2) much stronger due to higher number of charged-charged interactions
2023
Journal:  
Biotech Studies
Author:  
Abstract:

Since the start of COVID-19 pandemic, several mutant variants of SARS-CoV-2 have emerged with different virulence and transmissibility patterns. Some of these variants have been labeled as variants of concern (VOC). There are mainly five strain clades with VOC status: Alpha, Beta, Gamma, Delta, and Omicron. Omicron sub-variants have been currently in circulation around the world, and they show faster transmissibility and lower virulence compared to others. Receptor binding domain (RBD) of SARS-CoV-2 spike protein is the region where it binds to human angiotensin-converting enzyme 2 (hACE2) on the host cell. Mutations on RBD might have direct or indirect effects on differential disease patterns of these variants. In this study, we analyzed sequence and structures of SARS-CoV-2 variants’ RBD domains and documented their predicted affinities and contact interactions with hACE2. We found that Omicron sub-variants have much higher hACE2 affinities compared to other VOC strains. To understand reasons behind this, we checked biophysical characteristics of RBD-hACE2 contacts. Surprisingly, number of charged-charged interactions of Omicron sub-variants were on average 4-fold higher. These higher charged residue mutations on epitope region of Omicron sub-variants leading to stronger affinity for hACE2 might shed light onto why Omicron has less severe disease symptoms.

Keywords:

0
2023
Journal:  
Biotech Studies
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Biotech Studies

Journal Type :   Uluslararası

Metrics
Article : 537
Cite : 2.242
Biotech Studies