User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 16
 Downloands 2
Analysis and Identification of Aeroplane Images Using Transform Based Methods
2021
Journal:  
Turkish Journal of Computer and Mathematics Education
Author:  
Abstract:

Object recognition is one of oldest applications of automatic pattern recognition. The object recognition has generated lot of interest among researchers for a variety of applications like face detection, people counting, vehicle detection, manufacturing industry, online images, security etc. The main objective of this work is to recognize aeroplanes, even if they are of different size (different scale) or even if they are Oriented with different skew angles. This work would be useful in tracking an aircraft for navigation applications. Further the identification of aeroplanes can be used in military applications to detect the enemy aircrafts. To achieve these objectives, the main challenge is the different shape, size and orientation of aircrafts which pose difficulty in the object recognition. In this work, an aeroplane is identified by extracting and comparing features between the test and training database images. This task is difficult for computers, however for humans; object recognition is effortless and instantaneous. In the first stage, the images of different aeroplanes and helicopters are selected and these images are downloaded from the web page “www.grabcad.com”. These images are grouped into two sets. The first set comprises database images which are used for training the system, whereas the second set is used for testing and obtaining the recognition accuracy for different algorithms. All these images are normalized and binarized using the thresholding concept. In the second stage, 2D- Transforms (2D-FFT and 2D-Hough Transform) are applied to all the pixels of these binarised images (both testing and training database). After applying the transform, the pixel intensity value will have both, the real and also the imaginary values. Since the imaginary values of the pixel, has only “phase information”, which is not useful in the recognition of aeroplanes, this imaginary value of all the pixels in all the images are neglected. The real part of the pixel intensity values (after applying the transform) is only considered for recognition. In this work, all the images are normalized to 50 X 50 size and hence the total number of pixels becomes 2500 for every image. The size of the matrix of each image (both test and database) is converted to (2500 X 1) column matrix from 50 X 50 matrix size. Hence after applying 2D transforms each image is of matrix size (2500 X 1).This matrix of (2500 X 1) size for each image (both testing and training), becomes the feature vector for that particular image. This process is applied to all the images and the features are extracted for all the test and database images. In the third and the last stage, k-NN (k Nearest Neighbourhood) classifier is used in the identification of an aeroplane. The k-NN classifier with k=1 is the Euclidean distance. Hence, the recognition is achieved by calculating and identifying a database image which has minimum Euclidean distance to the given test image. The test image is shown on the left side of the result image, whereas the identified image of the database is shown on the right side of the result image. The cross validation of the results is also performed in this work. The Recognition accuracy with 2D-FFT is obtained as 88% and the Recognition accuracy with 2D-Hough transform is found to be 82%. The reason for this difference can be because of the reason that, Hough transforms works on the principle of detection of straight lines in any image. Hence it can be concluded that 2D-FFT has higher Recognition accuracy compared to 2D-Hough transform..

Keywords:

0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Turkish Journal of Computer and Mathematics Education

Journal Type :   Uluslararası

Metrics
Article : 1.706
Cite : 103
2023 Impact : 0.071
Turkish Journal of Computer and Mathematics Education