User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 17
 Downloands 4
The Effect of Zinc on Growth and Shoot Concentrations of Sodium and Potassium in Pepper Plants under Salinity Stress
2006
Journal:  
Turkish Journal of Agriculture and Forestry
Author:  
Abstract:

The effect of increasing concentrations of zinc (Zn) on NaCl toxicity was studied in pepper (Capsicum annuum L. cv. Kahramanmaras-3) plants grown in a growth chamber under controlled conditions. Plants were grown in severely Zn-deficient soil with increasing Zn (0, 2, and 10 mg Zn kg-1 soil) and NaCl (0%, 0.5% and 1.5% NaCl in irrigation water) treatments. After 46 days of growth, the plants were harvested and the shoots were analyzed for dry matter production, concentrations of Zn, sodium (Na), potassium (K), and phosphorous (P), and K/Na ratios. The results showed that Zn deficiency in soil significantly reduced shoot growth, particularly under the highest salt treatment. As expected, increasing the application of NaCl reduced shoot dry matter production; however, this decrease was greater in the 2 mg Zn kg-1 soil compared to the 10 mg Zn kg-1 soil. Increases in Zn application from 2 to 10 mg kg-1 soil reduced shoot concentration of Na and elevated K concentration. Consequently, K/Na ratios of plants were highest in the highest Zn application condition. The results of the present study indicated the importance of the Zn nutritional status of plants in improving salt stress tolerance. Possibly, by affecting the structural integrity and controlling the permeability of root cell membranes, adequate Zn nutrition reduces excess uptake of Na by roots in saline conditions. Adequate Zn nutrition is, therefore, important for the maintenance of good growth and yield under saline conditions.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles






Turkish Journal of Agriculture and Forestry

Field :   Ziraat, Orman ve Su Ürünleri

Journal Type :   Uluslararası

Metrics
Article : 1.899
Cite : 5.347
Turkish Journal of Agriculture and Forestry