User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 15
 Downloands 1
Root system attributes of 12 juvenile indigenous early colonising shrub and tree species with potential for mitigating erosion in New Zealand
2018
Journal:  
New Zealand Journal of Forestry Science
Author:  
Abstract:

Restoring erosion-prone land with indigenous species, whether by managed reforestation (planting) or by passive natural reversion, is reliant on knowing which species mix is likely to provide the quickest and most effective mitigation against shallow landslides. In turn, this requires knowledge of differences in growth metrics among plant species, particularly during their formative years. This study presents data on the root development and architecture of 12 of New Zealand’s commonest early colonising indigenous shrub and tree species. These data are crucial to the development of guidelines and policy for land use conversion and future land management options where unmitigated erosion is of increasing concern. Methods: In a plot-based field trial, the growth performance of Coprosma robusta (karamū), Plagianthus regius (ribbonwood), Sophora tetraptera (kōwhai), Pittosporum eugenioides (lemonwood), Pittosporum tenuifolium (kōhūhū), Hoheria populnea (lacebark), Myrsine australis (māpou), Pseudopanax arboreus (fivefinger), Cordyline australis (cabbage tree), Knightia excelsa (rewarewa), Leptospermum scoparium (mānuka), and Coriaria arborea (tutu) was measured annually over five consecutive years. Results: Eleven species developed a heart-shaped root system and Cordyline australis, a tap-rooted system. By year 5, the root/shoot ratio ranged between 0.24 and 0.44, > 99.5% of the total root mass and root length of all species was confined to within 0.5 m of the ground surface and > 73% within 1 radial metre of the root bole. Regressions between root collar diameter (RCD over bark) and root length were highly significant (P < 0.001) (r2 values 0.55–0.92), as were regressions for root biomass (r2 values 0.31–0.97). RCD fitted best for below-ground biomass (r2 values 0.67–0.94). Conclusions: The species with the greatest potential for mitigating shallow forms of erosion were Pittosporum eugenioides, Plagianthus regius, Coriaria arborea, Pittosporum tenuifolium, Hoheria populnea, Sophora tetraptera, and Cordyline australis. New data on differences in root metrics between species have improved our understanding of their strengths and limitations, alone or as mixed plantings, and of the time (years after planting) and density of plantings required to achieve a successful erosion control outcome. Modelling root-soil reinforcement and the role of root systems in mitigating the initiation of shallow slope failures should include roots > 1 mm in diameter.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles








New Zealand Journal of Forestry Science

Field :   Ziraat, Orman ve Su Ürünleri

Journal Type :   Uluslararası

Metrics
Article : 206
Cite : 79
New Zealand Journal of Forestry Science