User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 27
 Downloands 5
Phytochemicals of Hibiscus sabdariffa with Therapeutic Potential against SARS-CoV-2: A Molecular Docking Study
2023
Journal:  
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Author:  
Abstract:

In this study, the possible interactions of 17 phytochemicals that were reported as the most abundant biomolecules of Hibiscus sabdariffa, including many organic acids as well as catechin and quercetin derivatives, with 3CLpro and PLpro proteases of SARS-CoV-2 have been investigated via molecular docking. Caffeoylshikimic acid/3CLpro showed the lowest binding energy (-7.72 kcal/mol) with seven H-bonds. The second-lowest binding energy was computed in the chlorogenic acid/3CLpro complex (-7.18 kcal/mol), which was found to form 6 H-bonds. Also, low binding energies of cianidanol (-7.10 kcal/mol), cryptochlorogenic acid (-6.67 kcal/mol), and kaempferol (-6.82 kcal/mol) were calculated to 3CLpro with several H-bond interactions. Nelfinavir (-10.16 kcal/mol) and remdesivir (-6.40 kcal/mol), which have been used against COVID-19, were obtained to have low binding energies to 3CLpro with 3 H-bond formations each. On the other hand, the nicotiflorin/PLpro complex, which had the lowest binding energy (-7.40 kcal/mol), was found to have only 1 H-bond interaction. The second-lowest binding energy was reported in chlorogenic acid/PLpro (-7.20 kcal/mol), which was found to possess four H-bonds. On the other hand, epigallocatechin gallate/PLpro, which was shown to have a -5.95 kcal/mol binding energy, was found to form 8 H-bond interactions. Furthermore, the quercetin pentosylhexoside/PLpro complex was monitored to have low binding energy (-6.54 kcal/mol) with 9 H-bonds, which stands as the highest number of H-bonds in all complexes. Therefore, several molecules of Hibiscus sabdariffa were found to have strong binding affinity to the main proteases of SARS-CoV-2. This study suggests many compounds, including caffeoylshikimic acid and nicotiflorin, to inhibit 3CLpro and PLpro activities. As a result, numerous chemicals derived from Hibiscus sabdariffa have the potential to be employed therapeutically against SARS-CoV-2 infection.

Keywords:

0
2023
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi

Journal Type :   Uluslararası

Metrics
Article : 2.053
Cite : 3.802
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi